Abstract
We present here an innovative cryogenic light detector capable to measure a few tens of eV signal thanks to the amplification assisted by the Neganov–Luke effect. The thermal signal boost in the presence of an electric field allows us to improve the signal-to-noise ratio reaching a baseline noise of around 20 eV. This device – coupled to an enriched 130TeO2 bolometer (435 g) – registered 160 eV Cherenkov light signal induced by 2615 keV 208Tl with a signal to noise ratio about 6:1. Since α particles emitted in decays of natural radionuclides do not produce the Cherenkov radiation, we were able to achieve an efficient α∕γ separation in the region of interest for neutrinoless double beta decay of 130Te (Q-value is 2527 keV). Specifically, a rejection factor of 99.9% for α particles was obtained with a 98.3% acceptance of β∕γ events. The achieved α rejection efficiency is required to reduce the dominant α background in the follow-up of the CUORE experiment (CUPID), a ton-scale bolometric search with particle identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.