Abstract
Animal models are important tools to investigate the pathogenesis and develop treatment strategies for breast cancer in humans. In this study, we developed a new three-dimensional in vivo arteriovenous loop model of human breast cancer with the aid of biodegradable materials, including fibrin, alginate, and polycaprolactone. We examined the in vivo effects of various matrices on the growth of breast cancer cells by imaging and immunohistochemistry evaluation. Our findings clearly demonstrate that vascularized breast cancer microtissues could be engineered and recapitulate the in vivo situation and tumor-stromal interaction within an isolated environment in an in vivo organism. Alginate–fibrin hybrid matrices were considered as a highly powerful material for breast tumor engineering based on its stability and biocompatibility. We propose that the novel tumor model may not only serve as an invaluable platform for analyzing and understanding the molecular mechanisms and pattern of oncologic diseases, but also be tailored for individual therapy via transplantation of breast cancer patient-derived tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.