Abstract

IntroductionAn innovative computational model was developed to address challenges regarding the evaluation of treatment sequences in patients with relapsing–remitting multiple sclerosis (RRMS) through the concept of a ‘virtual’ physician who observes and assesses patients over time. We describe the implementation and validation of the model, then apply this framework as a case study to determine the impact of different decision-making approaches on the optimal sequence of disease-modifying therapies (DMTs) and associated outcomes.MethodsA patient-level discrete event simulation (DES) was used to model heterogeneity in disease trajectories and outcomes. The evaluation of DMT options was implemented through a Markov model representing the patient’s disease; outcomes included lifetime costs and quality of life. The DES and Markov models underwent internal and external validation. Analyses of the optimal treatment sequence for each patient were based on several decision-making criteria. These treatment sequences were compared to current treatment guidelines.ResultsInternal validation indicated that model outcomes for natural history were consistent with the input parameters used to inform the model. Costs and quality of life outcomes were successfully validated against published reference models. Whereas each decision-making criterion generated a different optimal treatment sequence, cladribine tablets were the only DMT common to all treatment sequences. By choosing treatments on the basis of minimising disease progression or number of relapses, it was possible to improve on current treatment guidelines; however, these treatment sequences were more costly. Maximising cost-effectiveness resulted in the lowest costs but was also associated with the worst outcomes.ConclusionsThe model was robust in generating outcomes consistent with published models and studies. It was also able to identify optimal treatment sequences based on different decision criteria. This innovative modelling framework has the potential to simulate individual patient trajectories in the current treatment landscape and may be useful for treatment switching and treatment positioning decisions in RRMS.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12325-021-01975-5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.