Abstract

Groundwater salinization in coastal aquifers is a major socioeconomic challenge in Oman and many other regions worldwide due to several anthropogenic activities and natural drivers. Therefore, assessing the salinization of groundwater resources is crucial to ensure the protection of water resources and sustainable management. The aim of this study is to apply a novel approach using predictive optimized ensemble trees-based (ETB) machine learning models, namely Catboost regression (CBR), Extra trees regression (ETR), and Bagging regression (BA), at two levels of modeling strategy for predicting groundwater TDS as an indicator for seawater intrusion in a coastal aquifer, Oman. At level 1, ETR and CBR models were used as base models or inputs for BA in level 2. The results show that the models at level 1 (i.e., ETR and CBR) yielded satisfactory results using a limited number of inputs (Cl, K, and Sr) from a few sets of 40 groundwater wells. The BA model at level 2 improved the overall performance of the modeling by extracting more information from ETR and CBR models at level 1 models. At level 2, the BA model achieved a significant improvement in accuracy (MSE = 0.0002, RSR = 0.062, R2 = 0.995 and NSE = 0.996) compared to each individual model of ETR (MSE = 0.0007, RSR = 0.245, R2 = 0.98 and NSE = 0.94), and CBR (MSE = 0.0035, RSR = 0.258, R2 = 0.933 and NSE = 0.934) at level 1 models in the testing dataset. BA model at level 2 outperformed all models regarding predictive accuracy, best generalization of new data, and matching the locations of the polluted and unpolluted wells. Our approach predicts groundwater TDS with high accuracy and thus provides early warnings of water quality deterioration along coastal aquifers which will improve water resources sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.