Abstract

AbstractOverpressure is always considered as a severe problem in the oil industry. Besides creating life risks through serious accidents while drilling, failure to correctly identify high-pressure intervals causes a significant increase in costs and prolongs the drilling process. Kazhdumi Formation in the Abadan Plain is considered as a high-pressure formation in several wells. Various reasons can cause overpressure problem. Hydrocarbon generation is one cause of abnormal pressure in source rocks. Understanding hydrocarbon generation potential can be a helpful approach since the Kazhdumi Formation is considered as a probable source rock in this area. In this paper, in order to better understand the problem of abnormal pressure in Kazhdumi Formation, geochemical concepts and tools have been applied. To that way, 1D petroleum system modeling of five wells was done, and the thermal maturity level of Kazhdumi Formation was determined and then, compared with drilling records. The results indicate that in wells where this formation has sufficient organic matter and has reached an early mature level, there is an abnormal pressure problem. Otherwise, this formation does not show abnormal pressure. Also, geochemical data are not available in all drilled wells, which makes impossible the assessing of hydrocarbon generation role. Therefore, petrophysical well logs (sonic (DT), neutron (NPHI), density (RHOB), spectral gamma ray (SGR), and resistivity (RES)) as well as 137 sets of geochemical data belonging to 13 wells from 7 oilfields in the Abadan Plain were used to predict geochemical indicators. Using artificial neural networks, geochemical data of a well in Abadan Plain were predicted. This selected well has a high-pressure problem in Kazhdumi Formation, but no geochemical data are available in this well. The results of predicted geochemical data show that the high-pressure phenomenon in this well may also be due to hydrocarbon generation. The precise understanding of the abnormal pressure, resulting from hydrocarbons generation, requires comprehensive studies and a full investigation of the studied area. However, the results of this paper help to predict approximately the behavior of the source rocks before drilling. Acquiring this overview will aid in reducing drilling hazards and costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call