Abstract

The innovations approach to linear least-squares approximation problems is first to whiten the observed data by a causal and invertible operation, and then to treat the resulting simpler white-noise observations problem. This technique was successfully used by Bode and Shannon to obtain a simple derivation of the classical Wiener filtering problem for stationary processes over a semi-infinite interval. Here we shall extend the technique to handle nonstationary continuous-time processes over finite intervals. In Part I we shall apply this method to obtain a simple derivation of the Kalman-Bucy recursive filtering formulas (for both continuous-time and discrete-time processes) and also some minor generalizations thereof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.