Abstract

Most EHL numerical calculation methods considering both starved and flooded conditions, employ a fixed multiple of the Hertzian radius for the normalization of the computational domain. These methods are often used to investigate the influence of the lubricant supply on friction etc., but the solutions obtained might be numerically starved. The present numerical calculation method utilizes an optimized normalization of the computational domain to ensure that the solutions obtained are not numerically starved. With this normalization method, the computational domain can be appropriately meshed, regardless of the variability in the inlet length due to changes in the operating conditions. This method can, therefore, be used to obtain accurate EHL film thickness and pressure data over a wide range of operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call