Abstract
Recently, the adoption of micromobility as an alternative mode of transportation on a large scale has been growing rapidly. However, its operational and safety aspects have not been extensively investigated in the literature. Following this purpose, we developed a novel methodology that aims at evaluating priority areas for shared micromobility system users’ accident risk mitigation based on predicted injury severity using a machine learning-based approach. The methodology proposed in this paper consists of two models: a predictive model, which is based on an artificial neural network with a pattern recognition algorithm, to estimate the expected safety indicator of an urban zone, and a clustering method to define the priority areas for intervention through the application of a geofence speed regulation system. A real case study was carried out in the city of Bari, Italy, to test the effectiveness of the proposed methodology. The results showed how it is possible to define areas for intervention with different priorities based on the expected severity index. The proposed methodology can be seen as a decision support system to assist transport operators and urban planners in regulating shared micromobility vehicles in urban areas by defining priority areas for intervention through geofencing and, therefore, it can be useful for improving micromobility adoption, road safety, and urban mobility policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.