Abstract

Localized administration of anti-inflammatory agents benefits patients after myocardial infarction (MI) by repressing/modulating inflammatory response of the MI region and thus accelerating repair of the impaired tissues. Colchicine (Col), an ancient natural drug, has excellent anti-inflammatory effects; however, its utilization is strictly limited due to its severe systemic toxicity and narrow therapeutic window. In this study, we developed an intramyocardial delivery system of Col using an injectable, thermosensitive poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) polymer hydrogel as the vehicle for the treatment of MI while minimizing its systemic toxicity. The aqueous PLGA-PEG-PLGA solution loaded with Col (Col@Gel) underwent a sol-gel transition at 35 °C and maintained a gel state at body temperature. Col was released from the Col@Gel in an initial burst followed by a sustained release manner for over 8 days. The in vitro cell tests showed that the Col@Gel system significantly inhibited macrophage proliferation and migration. In a mouse model of MI, a single intramyocardial administration of the Col@Gel effectively alleviated cardiac inflammation, inhibited myocardial apoptosis and fibrosis, improved cardiac function and structure, and increased mouse survival without inducing severe systemic toxicity, which was observed following intraperitoneal administration of Col solution. These results suggested that the Col@Gel system is a reliable drug delivery system for the sustained local release of Col and has great potential as an anti-inflammatory therapy for the treat of MI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call