Abstract

Ischemic stroke is a devastating medical condition with poor prognosis due to the lack of effective treatment modalities. Transplantation of human neural stem cells or primary neural cells is a promising treatment approach, but this is hindered by limited suitable cell sources and low in vitro expansion capacity. This study aimed i) to use small molecules to reprogram gingival mesenchymal stem cells (GMSCs) commitment to the neural lineage cells in vitro, and ii) to use hyaluronic acid (HA) hydrogel scaffolds seeded with GMSCs-derived neural lineage cells to treat ischemic stroke invivo. Neural induction was carried out with a small molecule cocktail-based one-step culture protocol over a period of 24 hours. The induced cells were analyzed for expression of neural markers with immunocytochemistry and qRT-PCR. The SD rats (n=100) were subjected to the middle cerebral artery occlusion (MCAO) reperfusion ischemic stroke model. Then, after 8 days post-MCAO, the modelled rats were randomly assigned to six study groups (n=12 per group): (i) GMSCs, (ii) GMSCs-derived neural lineage cells, (iii) HA and GMSCs-derived neural lineage cells, (iv) HA, (v) PBS, and (vi) sham transplantation control, and received their respective transplantation. Evaluation of post-stroke recovery were performed by the behavioral tests and histological assessments. The morphologically altered nature of neural lineages has been observed of the GMSCs treated with small molecules compared to the untreated controls. As shown by the qRT-PCR and immunocytochemistry, small molecules further signifcantly enhanced the experession level of neural markers of GMSCs as compared with the untreated controls (all p<0.05). Intracerebral injection of self-assembling HA hydrogel carrying GMSCs-derived neural lineage cells promoted the recovery of neural function and reduced ischemic damage in rats with ischemic stroke, as demonstrated by histological examination and behavioral assessments (all p<0.05). In conclusion, the small molecule cocktail significantly enhanced the differentiation of GMSCs into neural lineage cells. The HA hydrogel was found to facilitate the proliferation and differentiation of GMSCs-derived neural lineage cells. Furthermore, HA hydrogel seeded with GMSCs-derived neural lineage cells could promote tissue repair and functional recovery in rats with ischemic stroke and may be a promising alternative treatment modality for stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call