Abstract

Scaffolds of tissue engineering for particular sites, for example, nerve, cardiac, and bone tissues, require a comprehensive design of 3D biomaterials that covers all aspects of physical structures and chemical composition, needed for desired cell regeneration. Injectable and in situ forming hydrogel scaffolds, possessing highly hydrated and interconnected structures, have demonstrated several advantages for use in regenerative medicine. In this study, we have developed a new design of injectable hydrogels based on collagen, aldehyde modified-nanocrystalline cellulose, and chitosan loaded with gold nanoparticles (Collagen/ADH-CNCs/CS-Au). The results of experiments exposed that the various molar ratios of Collagen/CNCs and the presence of CS-Au content have a significant effect on the microscopic morphology, equilibrium swelling, in vitro degradation, and mechanical properties of the hydrogels. The cytotoxicity analysis was performed for the NIH 3T3 cell line, which displays the effectiveness and non-toxicity of the developed hydrogels towards the destruction of the cells. The achieved results suggested that the prepared hydrogel network has great potential as a new biomaterial for tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.