Abstract

The intricate, hostile, and diverse nature of osteomyelitis (OM) poses a challenge for complete bacterial eradication and osteogenesis promotion via conventional treatment. Recently, functional hydrogels exhibiting antibacterial and osteogenic properties emerge as a promising avenue for OM wound healing in clinical practice. However, the preparation procedures and associated costs on cytokine and cell therapies for certain functional hydrogels can be complex and prohibitively expensive. In our research, a hybrid hydrogel dressing has been formulated utilizing carboxymethyl chitosan (CMCS) as the base material, and designed with inherent antibacterial, adhesion, proliferation, and differentiation characteristics, showing promise as a candidate for eradicating infection and promoting bone regeneration. The hybrid hydrogel is composed of interconnected networks of Fe3+-induced self-assembled CMCS and the antibacterial drug ciprofloxacin (CIP), resulting in excellent injectability and moldability. Notably, the CMCS/Fe3+/CIP hybrid hydrogel is capable of regulating antibacterial responses and stimulating osteogenesis in infected microenvironments without additional additives. This injectable antibacterial and osteogenic-promoting hydrogel establish a high-potential platform for low-cost, safe and effective treatment of OM by expediting the initial stages of infected bone wound repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call