Abstract

The one-dimensional linear inverse problem of heat conduction is considered. An initial value technique is developed which solves the inverse problem without need for iteration. Simultaneous estimates of the surface temperature and heat flux histories are obtained from measurements taken at a subsurface location. Past and future measurement times are inherently used in the analysis. The tradeoff that exists between resolution and variance of the estimates of the surface conditions is discussed quantitatively. A stabilizing matrix is introduced to the analysis, and its effect on the resolution and variance of the estimates is quantified. The technique is applied to “exact” and “noisy” numerically simulated experimental data. Results are presented which indicate the technique is capable of handling both exact and noisy data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.