Abstract

We developed a novel cell separation method based on the mechanical properties using a sponge-like monolithic polymer (SPM) in a spin-column format capable of high throughput and mass processing for cell diagnosis and separation. The continuous large flow pores of the monolithic skeleton around 200 μm were expected to act as a sieving matrix for large flexible molecules such as cells larger than 10 μm in diameter, based not only on the size but also on the mechanical deformability of the cells. The passage rates of rigid polystyrene beads ranging in size from 1 to 10 μm were investigated and demonstrated that the spin column acted as a separation matrix rather than a size-based cut-off filter in the 60 and 200 μm pores of the SPM. Two cell types, adherent cells (HeLa cells) and suspension cells (THP-1 cells), showed different passage behavior in the spin column, and 70 % and 30 % of the cells, respectively, were trapped in the column and never eluted. To investigate how the mechanical deformability of the cells affects the passage behavior, glutaraldehyde treatment, which denatured the proteins and changed the elastic moduli, was performed and compared. As a result, the fixed cells drastically reduced the passage rate and became trapped inside the SPM column. These initial studies explored a new application field of SPM for high throughput cell separation based on the mechanical properties of the cells despite the same size, and contribute to a new cell assay method prior to cell transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call