Abstract
In this paper, an initial point alignment method of narrow weld using laser vision sensor is presented on the basis of the relationship between the feature point of laser stripe and initial point. The whole initial point alignment process contains two stages. At the first stage, the initial point image is captured, and the image coordinates of the feature point of laser stripe and initial point are obtained. At the second stage, according to the relationship between the feature point of laser stripe and initial point, the three-dimensional (3D) coordinates of initial point could be determined to achieve initial point alignment. The initial point alignment method mainly includes vision sensing and motion control two parts. Firstly, a new laser vision sensor with a uniform LED surface light source is developed to capture the high signal-to-noise ratio (SNR) image including narrow weld, and the feature point of laser stripe and initial point are detected using the image processing method. Secondly, initial point alignment control system including feature verification and controller is designed to achieve initial point alignment control. Finally, a series of initial point alignment experiments of straight and curve narrow weld are conducted to test the performance of the proposed method. Experimental results indicate the alignment error is less than previous methods, which could be used in automatic welding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.