Abstract

The Convex SPP-1000 is the most recent of the new generation of Scalable Parallel Computing systems being offered commercially. The SPP-1000 is distinguished by incorporating the first commercial version of directory based cache coherence mechanisms and the emerging Scalable Coherent Interface protocol to achieve a true global shared memory capability. Pairs of HP PA-RISC processors are combined in clusters of 8 processors using a cross-bar switch. Up to 16 clusters are interconnected using 4 ring networks in parallel with a distributed global cache. To evaluate this new system in a Beta test environment, the Goddard Space Flight Center conducted three classes of operational experiments with an emphasis on applications related to Earth and space science. A cluster was tested as a platform for executing a multiple program workload exploiting job-stream level parallelism. Synthetic programs were run to measure overhead costs of barrier, fork-join, and message passing synchronization primitives. A key problem for Earth and space science studies is gravitational N-body simulation of solar systems to galactic clusters. An efficient tree-code version of this problem was run to reveal scaling properties of the system and to measure the overall efficiency. This paper presents the experimental results and findings of this study and provides the earliest published evaluation of this new scalable architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call