Abstract

Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical thickness and effective particle radius employ well-known solar reflectance techniques using pre-calculated reflectance look-up tables. We evaluate the quantitative uncertainty in simultaneous retrievals of cloud optical thickness and particle size for this type of algorithm. The technique uses sensitivity calculations derived from the reflectance look-up tables, coupled with estimates for the effect of various error terms on the uncertainty in inferring the actual cloud-top reflectance. The error terms include the effects of instrument calibration, surface spectral albedo, and atmospheric corrections on both water and ice cloud retrievals. Because particle shapes in ice clouds are highly variable, the effect of particle shape is analyzed separately with a more approximate method. Results will deal exclusively with pixel-level uncertainties associated with plane-parallel clouds; real-world radiative departures from a plane-parallel model are an additional consideration. While we demonstrate the uncertainty technique with operational 1 km MODIS retrievals from the Terra and Aqua satellite platforms, the technique is applicable to any reflectance-based satellite- or air-borne sensor retrieval using similar spectral channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.