Abstract

We give an integrability criterion on a real-valued non-increasing function $\unicode[STIX]{x1D713}$ guaranteeing that for almost all (or almost no) pairs $(A,\mathbf{b})$, where $A$ is a real $m\times n$ matrix and $\mathbf{b}\in \mathbb{R}^{m}$, the system $$\begin{eqnarray}\Vert A\mathbf{q}+\mathbf{b}-\mathbf{p}\Vert ^{m}<\unicode[STIX]{x1D713}(T),\quad \Vert \mathbf{q}\Vert ^{n}<T,\end{eqnarray}$$ is solvable in $\mathbf{p}\in \mathbb{Z}^{m}$, $\mathbf{q}\in \mathbb{Z}^{n}$ for all sufficiently large $T$. The proof consists of a reduction to a shrinking target problem on the space of grids in $\mathbb{R}^{m+n}$. We also comment on the homogeneous counterpart to this problem, whose $m=n=1$ case was recently solved, but whose general case remains open.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call