Abstract

Transmission of avian influenza virus into human populations has the potential to cause pandemic outbreaks. A major determinant of species tropism is the identity of amino acid 627 in the PB2 subunit of the heterotrimeric influenza polymerase; glutamic acid predominates in avian PB2, whereas lysine occupies this position in human isolates. We show that a dominant inhibitory activity in human cells potently and selectively restricts the function of polymerases containing an avian-like PB2 with glutamic acid at residue 627. Restricted polymerases fail to assemble into ribonucleoprotein complexes, resulting in decreased genome transcription, replication, and virus production without any significant effect on relative viral infectivity. Understanding the molecular basis of this species-specific restriction should provide strategies to prevent and treat avian influenza outbreaks in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.