Abstract
The action of Ca(2+)-dependent cell-cell adhesion molecules (cadherins) on cell-to-cell channel-mediated intercellular communication was investigated in mouse L and rat Morris hepatoma cells. These cells fail to adhere to one another in aggregation assays and thus seem to lack cell adhesion molecules. Expression of exogenous cadherin induced strong cell-cell adhesion in both cell types, but had opposite effects of communication, causing inhibition in L cells and improvement in hepatoma cells. Both cells express the connexin43 cell-to-cell channel protein. By western blot we found no cadherin-specific changes in connexin43 protein in either cell type, but connexin43 gap junctional plaque staining, i.e. connexin43 localization to cell-cell junctions, was inhibited in L cells and facilitated in hepatoma cells. In addition we found that the inhibitory effect is largely abolished by blockers of glycosylation. Cadherin-cadherin interactions are known to trigger cell type-specific intracellular signal cascades resulting in diverse end effects, and gap junctional communication/plaque formation seems a further example of such cell type-specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.