Abstract

Temperature-dependent (25-80 degrees C) infrared (IR) spectra were obtained for recombinant methionyl human granulocyte-colony stimulating factor (rmethuG-CSF) in aqueous solutions over the pD range of 5.5-2.1 to investigate its thermal stability at various pDs. Second derivative, Fourier self-deconvolution, and curve-fitting analyses were performed to analyze the obtained spectra. These spectral analyses demonstrated that in the thermal unfolding process the alpha-helix structure of rmethuG-CSF partially changes to an unordered structure and then the unordered structure forms aggregates. The temperature-dependent IR spectra revealed that the structure of rmethuG-CSF is the most stable at pD 2.5 in the pD range of 5.5-2.1. It has been suggested that the unordered structure formed before the marked structural change in the whole molecule is a perturbed form of the native structure of rmethuG-CSF and plays a role as a precursor for the aggregation. This alteration to the perturbed form is likely to be the first secondary structure change that occurs along the aggregation pathway. Of particular note is that the stability at pD 2.1 is slightly lower than that at pD 2.5, but that aggregates are formed at higher temperature at pD 2.1 than at pD 2.5, probably because the repulsive interaction between the unordered structure is stronger at pD 2.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.