Abstract

In this paper, terahertz time-domain spectroscopy (THz-TDS) is used for the first time to detect fabricated defects in a glass fiber-skinned lightweight honeycomb composite panel. A novel amplitude polynomial regression (APR) algorithm is proposed as a preprocessing method. This method segments the amplitude–frequency curves to simulate the heating and the cooling monotonic behavior as in infrared thermography. Then, the method of empirical orthogonal function (EOF) imaging is applied on the APR preprocessed data as a postprocessing algorithm. Signal-to-noise ratio analysis is performed to verify the image improvement of the proposed APR-EOF modality from a quantitative point of view. Finally, the experimental results and the physical analysis show that THz is more suitable with respect to the detection of defects in glass fiber lightweight honeycomb composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.