Abstract

AbstractIn the framework of the EUMETSAT Polar System–Second Generation (EPS‐SG) preparation, a new generation of the Infrared Atmospheric Sounding Interferometer (IASI) instrument has been designed. The IASI‐New Generation (IASI‐NG) will measure radiances at a doubled spectral resolution compared to its predecessor and with a signal‐to‐noise ratio improved by a factor of 2. The large amount of data arising from IASI‐NG will present many challenges for data transmission, storage and assimilation. Moreover, the full set of measured radiances will not be exploitable in an operational numerical weather prediction (NWP) context. For these reasons, an appropriate IASI‐NG channel selection in needed, aiming to select the most informative channels for NWP models. Therefore, the standard iterative channel selection methodology, based on the optimal linear estimation theory and assuming spectrally correlated errors, has been applied to a set of simulated data of the IASI‐NG spectrum. The entire simulated IASI‐NG spectrum has been first investigated, while finally focusing the channel selection procedure on the most interesting wavelength ranges for the assimilation. Through this process, a total of 500 channels have been chosen to serve as a basis for future channel selections to be provided to NWP centres – 277 temperature, 23 surface‐sensitive and 200 water vapour channels. One‐dimensional variational (1D‐Var) assimilation experiments show that using this selected set of channels leads to a reduction of the standard deviation of the error in temperature (up to 30%) and water vapour (up to 50%) profiles with respect to the information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.