Abstract

Aiming at the problems of big noise, lots of false targets, and accurate time extraction while tracking a flying target in the signal from a sky screen sensor, a flying target recognition and time extraction method is proposed, based on wavelet transformation. The noisy signal output by the sky screen sensor is filtered with wavelet transformation to filter out some high-frequency components; the filter is designed to handle the signal time frequency characteristics of the flying target and noise. To improve the recognition efficiency of whether the signal includes tracking of the flight target, based on a two-class discriminant model, the wavelet Fisher discriminant method is used to construct the feature vector of the false target and the flying target signal, and the recognition method of the flying target signal is studied. According to the wavelet modulus maxima theory, the single target signal is isolated, and the time moment of the flying target passing through the detection screen is calculated. The velocities calculated based on the flying target signal recognition method proposed in this paper and based on the least-mean-squares algorithm of the traditional sky screen sensor velocity measurement system are compared with the net target velocity measurement system. The results show that the velocity data obtained by the method in this paper are closer to the true value of the target flight velocity, and the average error between the velocity value obtained by the method in this paper and the standard net target velocity measurement system is less than 0.954 m/s, which verifies the superiority of the method proposed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.