Abstract
Defining valid patents in a particular technological field is an indispensable step in patent analysis. To minimise the risk of missing valid patents, domain experts manually exclude irrelevant patents, known as noise patents, from an initial patent set derived using a loose retrieval query. However, this task has become time-consuming and labour intensive due to the increasing number of patents and rising complexity of technological knowledge. This study proposes a semi-automated approach to noise patent filtering based on information entropy theory and latent Dirichlet allocation. The proposed approach comprises four discrete steps: (1) structuring patents using a term-weighting method; (2) recommending noise patent seeds based on the information quantity of patents in terms of focal keyword groups; (3) measuring text similarities for patent clustering using latent Dirichlet allocation; and (4) identifying potential noise patent clusters with respect to the noise patent seeds. Our case study confirms that the proposed approach is valuable as a complementary noise patent filtering tool that will enable domain experts to focus more on their own knowledge-intensive tasks such as prior art analysis and research and development (R&D) strategy formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.