Abstract

BackgroundProteomics continues to play a critical role in post-genomic science as continued advances in mass spectrometry and analytical chemistry support the separation and identification of increasing numbers of peptides and proteins from their characteristic mass spectra. In order to facilitate the sharing of this data, various standard formats have been, and continue to be, developed. Still not fully mature however, these are not yet able to cope with the increasing number of quantitative proteomic technologies that are being developed.ResultsWe propose an extension to the PRIDE and mzData XML schema to accommodate the concept of multiple samples per experiment, and in addition, capture the intensities of the iTRAQTM reporter ions in the entry. A simple Java-client has been developed to capture and convert the raw data from common spectral file formats, which also uses a third-party open source tool for the generation of iTRAQTM reported intensities from Mascot output, into a valid PRIDE XML entry.ConclusionWe describe an extension to the PRIDE and mzData schemas to enable the capture of quantitative data. Currently this is limited to iTRAQTM data but is readily extensible for other quantitative proteomic technologies. Furthermore, a software tool has been developed which enables conversion from various mass spectrum file formats and corresponding Mascot peptide identifications to PRIDE formatted XML. The tool represents a simple approach to preparing quantitative and qualitative data for submission to repositories such as PRIDE, which is necessary to facilitate data deposition and sharing in public domain database. The software is freely available from .

Highlights

  • Proteomics continues to play a critical role in postgenomic science as continued advances in mass spectrometry and analytical chemistry support the separation and identification of increasing numbers of peptides and proteins from their characteristic mass spectra

  • This is epitomised by a recent quantitative study acquiring data for the majority of the yeast proteome [7], where the majority of proteins had peptide identifications with available quantitative data obtained using stable isotope labelling in cell culture (SILAC)

  • The mass spectrometry data is represented in Mascot's .mgf format

Read more

Summary

Introduction

Proteomics continues to play a critical role in post-genomic science as continued advances in mass spectrometry and analytical chemistry support the separation and identification of increasing numbers of peptides and proteins from their characteristic mass spectra. Proteomics is beginning to address both these issues; wider genome coverage and quantitation of the proteins present The latter has been driven by the continued development of techniques for the relative and absolute quantification of protein levels [1,2,3,4,5,6]. This is epitomised by a recent quantitative study acquiring data for the majority of the yeast proteome [7], where the majority of proteins had peptide identifications with available quantitative data obtained using stable isotope labelling in cell culture (SILAC)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.