Abstract
Recommender systems are extensively seen as an effective means to combat information overload, as they redound us both narrow down the number of items to choose. They are seen as assistance us make better decisions at a lower transaction cost. Hence, recommender systems have become omnipresent in e-commerce and are also increasingly used in services in different other domains both online and offline where the number of items exceeds our potentiality to consider them all individually. The research papers recommender systems are software applications or systems that help individual users to discover the most relevant research papers to their needs. These systems use filtering techniques to create recommendations. These techniques are categorized majorly into collaborative-based filtering, content-based technique, and hybrid algorithm. In addition, they assist in decision making by providing product information both personalized and non-personalized, summarizing community opinion, search research papers, and providing community critiques. As a result, recommender systems have been shown to ameliorate the decision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.