Abstract

We investigated the electrical conduction and resistance switching mechanisms of TiOx thin films grown on three kinds of bottom electrode at room temperature (an inert Pt, an active Ti and fluorine tin oxide FTO electrodes). The bottom electrode materials strongly affect the I-V characteristics and switching parameters. The I-V characteristic is explained through the presence of interface states in the metal electrode devices (Pt and Ti) and the work function in the metal oxide device (FTO). The Pt device has the smallest VSET and largest switching ratio, while the Ti device shows the largest VSET and smallest switching ratio. XPS data shows non-lattice oxygen in TiOx films. Therefore, the proposed bipolar resistance switching arises from formation and rupture of filament paths, generated by the movement of oxygen vacancies. All devices depict the same electrical conductions, trap-controlled space-charge-limited, FN tunneling and Ohmic conductions for a high resistance state and a low resistance state, respectively. In this study, the rarely reported FN tunneling conduction in published TiOx-based ReRAM device was found, which can be attributed to an influence of the bottom electrode on the electronic distribution in devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.