Abstract

Inflationary models whose vacuum energy arises from a D-term are believed not to suffer from the supergravity eta problem of F-term inflation. That is, D-term models have the desirable property that the inflation mass can naturally remain much smaller than the Hubble scale. We observe that this advantage is lost in models based on string compactifications whose volume is stabilized by a nonperturbative superpotential: the F-term energy associated with volume stabilization causes the eta problem to reappear. Moreover, any shift symmetries introduced to protect the inflaton mass will typically be lifted by threshold corrections to the volume-stabilizing superpotential. Using threshold corrections computed by Berg, Haack, and Kors, we illustrate this point in the example of the D3-D7 inflationary model, and conclude that inflation is possible, but only for fine-tuned values of the stabilized moduli. More generally, we conclude that inflationary models in stable string compactifications, even D-term models with shift symmetries, will require a certain amount of fine-tuning to avoid this new contribution to the eta problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.