Abstract

We give a purely model-theoretic (denotational) characterization of the semantics of logic programs with negation allowed in clause bodies. In our semantics (the first of its kind) the meaning of a program is, as in the classical case, the unique minimum model in a programindependent ordering. We use an expanded truth domain that has an uncountable linearly ordered set of truth values between False (the minimum element) and True (the maximum), with a Zero element in the middle. The truth values below Zero are ordered like the countable ordinals. The values above Zero have exactly the reverse order. Negation is interpreted as refiection about Zero followed by a step towards Zero; the only truth value that remains unaffected by negation is Zero. We show that every program has a unique minimum model M P, and that this model can be constructed with a T P iteration which proceeds through the countable ordinals. Furthermore, collapsing the true and false values of the infinite-valued model M P to (the classical) True and False, gives a three-valued model identical to the well-founded one.KeywordsLogic ProgramMinimum ModelLogic ProgrammingDeductive DatabaseStable Model SemanticThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.