Abstract
Introduction. A method for solving the problem on the action of a normal force moving on an infinite plate according to an arbitrary law is considered. This method and the results obtained can be used to study the effect of a moving load on various structures.Materials and Methods. An original method for solving problems of the action of a normal force moving arbitrarily along a freeform open curve on an infinite plate resting on an elastic base, is developed. For this purpose, a fundamental solution to the differential equation of the dynamics of a plate resting on an elastic base is used. It is assumed that the movement of force begins at a sufficiently distant moment in time. Therefore, there are no initial conditions in this formulation of the problem. When determining the fundamental solution, the Fourier transform is performed in time. When the Fourier transform is inverted, the image is expanded in terms of the transformation parameter into a series in Hermite polynomials.Results. The solution to the problem on an infinite plate resting on an elastic base, along which a concentrated force moves at a variable speed, is presented. A smooth open curve, consisting of straight lines and arcs of circles, was considered as a trajectory. The behavior of the components of the displacement vector and the stress tensor at the location of the moving force is studied, as well as the process of wave energy propagation, for which the change in the Umov-Poynting energy flux density vector is considered. The effect of the speed and acceleration of the force movement on the displacements, stresses and propagation of elastic waves is investigated. The influence of the force trajectory shape on the stress-strain state of the plate and on the nature of the propagation of elastic waves is studied. The results indicate that the method is quite stable within a wide range of changes in the speed of force movement.Discussion and Conclusions. The calculations have shown that the most significant factor affecting the stress-strain states of the plate and the propagation of elastic wave energy near the concentrated force is the speed of its movement. These results will be useful under studying dynamic processes generated by a moving load.
Highlights
A method for solving the problem on the action of a normal force moving on an infinite plate according to an arbitrary law is considered
An infinite plate loaded with a normal force moving along a complex open trajectory
An original method for solving problems of the action of a normal force moving arbitrarily along a freeform open curve on an infinite plate resting on an elastic base, is developed
Summary
Движущейся по произвольному закону, на бесконечную пластину. Рассматривается метод решения задачи о действии вертикальной силы, движущейся по произвольному закону, на бесконечную пластину. Разработан оригинальный метод решения задач о действии на бесконечную пластину, лежащую на упругом основании, вертикальной силы, движущейся произвольно по незамкнутой кривой произвольной формы. Исследуется влияние на перемещения, напряжения и распространение упругих волн скорости и ускорения перемещения силы. Изучается влияние формы траектории движения силы на напряженно-деформированное состояние пластины и на характер распространения упругих волн. Результаты свидетельствуют о том, что метод достаточно устойчив в широких пределах изменения скорости движения силы. Проведенные расчеты показали, что наиболее существенным фактором, влияющим на напряженно-деформированные состояния пластины и на распространение энергии упругих волн вблизи сосредоточенной силы, является скорость ее движения. В. Действие вертикальной силы, движущейся по произвольному закону, на бесконечную пластину / А. An infinite plate loaded with a normal force moving along a complex open trajectory
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.