Abstract
In this paper, we consider the iterative system of singular Rimean-Liouville fractional-order boundary value problems with Riemann-Stieltjes integral boundary conditions involving increasing homeomorphism and positive homomorphism operator(IHPHO). By using Krasnoselskii’s cone fixed point theorem in a Banach space, we derive sufficient conditions for the existence of an infinite number of nonnegative solutions. The sufficient conditions are also derived for the existence of a unique nonnegative solution to the addressed problem by fixed point theorem in complete metric space. As an application, we present an example to illustrate the main results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.