Abstract

In this paper an infinite family of new compactly supported non-Haar p-adic wavelet bases in \( \mathcal{L}^2 (\mathbb{Q}_p^n ) \) is constructed. We also study the connections between wavelet analysis and spectral analysis of p-adic pseudo-differential operators. A criterion for a multidimensional p-adic wavelet to be an eigenfunction for a pseudo-differential operator is derived. We prove that these wavelets are eigenfunctions of the fractional operator. Since many p-adic models use pseudo-differential operators (fractional operator), these results can be intensively used in these models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.