Abstract

By a recent result of Livingston, it is known that if a knot has a prime power branched cyclic cover that is not a homology sphere, then there is an infinite family of non-concordant knots having the same Seifert form as the knot. In this paper, we extend this result to the full extent. We show that if the knot has nontrivial Alexander polynomial, then there exists an infinite family of non-concordant knots having the same Seifert form as the knot. As a corollary, no nontrivial Alexander polynomial determines a unique knot concordance class. We use Cochran-Orr-Teichner's recent result on the knot concordance group and Cheeger-Gromov's von Neumann $\rho$-invariants with their universal bound for a 3-manifold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.