Abstract

Let $\mathscr{M}_\mu$ be the set of all probability densities equivalent to a given reference probability measure $\mu$. This set is thought of as the maximal regular (i.e., with strictly positive densities) $\mu$-dominated statistical model. For each $f \in \mathscr{M}_\mu$ we define (1) a Banach space $L_f$ with unit ball $\mathscr{V}_f$ and (2) a mapping $s_f$ from a subset $\mathscr{U}_f$ of $\mathscr{M}_\mu$ onto $\mathscr{V}_f$, in such a way that the system $(s_f, \mathscr{U}_f, f \in \mathscr{M}_\mu)$ is an affine atlas on $\mathscr{M}_\mu$. Moreover each parametric exponential model dominated by $\mu$ is a finite-dimensional affine submanifold and each parametric statistical model dominated by $\mu$ with a suitable regularity is a submanifold. The global geometric framework given by the manifold structure adds some insight to the so-called geometric theory of statistical models. In particular, the present paper gives some of the developments connected with the Fisher information metrics (Rao) and the Hilbert bundle introduced by Amari.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.