Abstract
The invasion of ecosystems by non-native species is recognized as one of the most significant global challenges, particularly in semiarid regions where native biodiversity is already under stress from drought and land degradation. The implicit assumption is that invaders are strong competitors, but a greenhouse pairwise experiment conducted to examine intraspecific and interspecific competition effects of Opuntia ficus-indica, a widespread invader in semiarid ecosystems, with two species native to the highlands of Eritrea, Ricinus communis and Solanum marginatum, revealed that O. ficus-indica is a weak competitor. The unique ability of O. ficus-indica’s fallen cladodes to undergo vegetative growth becomes a fundamental trait contributing to its spread. This growth strategy allows O. ficus-indica to outgrow native species and establish a significant presence. In direct interaction, the competition in aboveground productivity measured by the logarithmic response ratio for O. ficus-indica was 3.4-fold and 5.9-fold higher than for R. communis and S. marginatum, respectively. Belowground, the native R. communis was facilitated (− 1.00 ± 0.69) by O. ficus-indica which itself suffered from high competition. This pattern became even more evident under water shortage, where aboveground competition for S. marginatum decreased 5.7-fold, and for O. ficus-indica, it increased 1.4-fold. Despite being a poor competitor, O. ficus-indica outperformed R. communis and S. marginatum in both aboveground (4.3 and 3.8 times more) and belowground (27 and 2.8 times more) biomass production, respectively. The findings of this study challenge the common interpretation that invasive species are strong competitors and highlight the importance of considering other factors, such as productivity and tolerance limits when assessing the potential impacts of invasive species on semiarid ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.