Abstract
In this article an attempt has been made to develop a flexible single parameter continuous distribution using Weibull distribution. The Weibull distribution is most widely used lifetime distributions in both medical and engineering sectors. The exponential and Rayleigh distribution is particular case of Weibull distribution. Here in this study we use these two distributions for developing a new distribution. Important statistical properties of the proposed distribution is discussed such as moments, moment generating and characteristic function. Various entropy measures like Rényi, Shannon and cumulative entropy are also derived. The kthkth order statistics of pdf and cdf also obtained. The properties of hazard function and their limiting behavior is discussed. The maximum likelihood estimate of the parameter is obtained that is not in closed form, thus iteration procedure is used to obtain the estimate. Simulation study has been done for different sample size and MLE, MSE, Bias for the parameter λλ has been observed. Some real data sets are used to check the suitability of model over some other competent distributions for some data sets from medical and engineering science. In the tail area, the proposed model works better. Various model selection criterion such as -2LL, AIC, AICc, BIC, K-S and A-D test suggests that the proposed distribution perform better than other competent distributions and thus considered this as an alternative distribution. The proposed single parameter distribution is found more flexible as compare to some other two parameter complicated distributions for the data sets considered in the present study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.