Abstract

The innate immune system is the body's first line of defense against infection. Natural killer (NK) cells, a vital part of the innate immune system, help to control infection and eliminate cancer. Studies have identified a vast array of receptors that NK cells use to discriminate between healthy and unhealthy cells. However, at present, it is difficult to explain how NK cells will respond to novel stimuli in different environments. In addition, the expression of different receptors on individual NK cells is highly stochastic, but the reason for these variegated expression patterns is unclear. Here, we studied the recognition of unhealthy target cells as an inference problem, where NK cells must distinguish between healthy targets with normal variability in ligand expression and ones that are clear "outliers." Our mathematical model fits well with experimental data, including NK cells' adaptation to changing environments and responses to different target cells. Furthermore, we find that stochastic, "sparse" receptor expression profiles are best able to detect a variety of possible threats, in agreement with experimental studies of the NK cell repertoire. While our study was specifically motivated by NK cells, our model is general and could also apply more broadly to explain principles of target recognition for other immune cell types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.