Abstract
Significant advances on smart decision support systems (DSSs) development have influenced important results on pregnancy care. Nevertheless, even considering the efforts to reduce the number of women deaths due to problems related to pregnancy, this decrease presented less impact than other areas of human development. Hypertensive disorders in pregnancy, particularly pre-eclampsia and eclampsia, account for significant proportion of perinatal morbidity and maternal mortality. In this context, this paper proposes an inference model that uses data mining (DM) techniques capable for operating in a data set to extract patterns and assist in knowledge discovery. Identifying hypertensive crises that complicate pregnancy, it can impact in a meaningful reduction the incidence of sequelae and death of pregnant women. Comparison between two Bayesian classifiers is performed in this work to better classify the hypertensive disorders severity. Results showed that Naive Bayes classifier had an excellent performance, presenting better precision and F-measure, compared to the other experimented classifiers. Even finding a good performance to predict hypertensive disorders, other Bayesian methods need to be evaluated, as well as other DM techniques such as those based on artificial intelligence (AI) and tree-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.