Abstract
We present an infeasible interior-point algorithm for symmetric linear complementarity problem based on modified Nesterov–Todd directions by using Euclidean Jordan algebras. The algorithm decreases the duality gap and the feasibility residual at the same rate. In this algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem. Each main iteration of the algorithm consists of a feasibility step and a number of centring steps. The starting point in the first iteration is strictly feasible for a perturbed problem. The feasibility steps lead to a strictly feasible iterate for the next perturbed problem. By using centring steps for the new perturbed problem, a strictly feasible iterate is obtained to be close to the central path of the new perturbed problem. Furthermore, giving a complexity analysis of the algorithm, we derive the currently best-known iteration bound for infeasible interior-point methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.