Abstract

We present an efficient inexact implicitly restarted Arnoldi algorithm to find a few eigenpairs of large unitary matrices. The approximating Krylov spaces are built using short-term recurrences derived from Gragg’s isometric Arnoldi process. The implicit restarts are done by the Krylov–Schur methodology of Stewart. All of the operations of the restart are done in terms of the Schur parameters generated by the isometric Arnoldi process. Numerical results confirm the effectiveness of the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.