Abstract

In this paper, we propose an inverse inexact iteration method for the computation of the eigenvalue with the smallest modulus and its associated eigenvector for a large sparse matrix. The linear systems of the traditional inverse iteration are solved with accuracy that depends on the eigenvalue with the second smallest modulus and iteration numbers. We prove that this approach preserves the linear convergence of inverse iteration. We also propose two practical formulas for the accuracy bound which are used in actual implementation. © 1997 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.