Abstract

The primary focus of this paper is on designing an inexact first-order algorithm for solving constrained nonlinear optimization problems. By controlling the inexactness of the subproblem solution, we can significantly reduce the computational cost needed for each iteration. A penalty parameter updating strategy during the process of solving the subproblem enables the algorithm to automatically detect infeasibility. Global convergence for both feasible and infeasible cases is proved. Complexity analysis for the KKT residual is also derived under mild assumptions. Numerical experiments exhibit the ability of the proposed algorithm to rapidly find inexact optimal solution through cheap computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.