Abstract

Quantum linear system algorithms (QLSAs) have the potential to speed up algorithms that rely on solving linear systems. Interior point methods (IPMs) yield a fundamental family of polynomial-time algorithms for solving optimization problems. IPMs solve a Newton linear system at each iteration to compute the search direction; thus, QLSAs can potentially speed up IPMs. Due to the noise in contemporary quantum computers, quantum-assisted IPMs (QIPMs) only admit an inexact solution to the Newton linear system. Typically, an inexact search direction leads to an infeasible solution, so, to overcome this, we propose an inexact-feasible QIPM (IF-QIPM) for solving linearly constrained quadratic optimization problems. We also apply the algorithm to ℓ1-norm soft margin support vector machine (SVM) problems, and demonstrate that our algorithm enjoys a speedup in the dimension over existing approaches. This complexity bound is better than any existing classical or quantum algorithm that produces a classical solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.