Abstract
We introduce and investigate the convergence properties of an inertial forward-backward-forward splitting algorithm for approaching the set of zeros of the sum of a maximally monotone operator and a single-valued monotone and Lipschitzian operator. By making use of the product space approach, we expand it to the solving of inclusion problems involving mixtures of linearly composed and parallel-sum type monotone operators. We obtain in this way an inertial forward-backward-forward primal-dual splitting algorithm having as main characteristic the fact that in the iterative scheme all operators are accessed separately either via forward or via backward evaluations. We present also the variational case when one is interested in the solving of a primal-dual pair of convex optimization problems with complexly structured objectives, which we also illustrate by numerical experiments in image processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.