Abstract

We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of $\mathfrak{sl}_2\mathbb{C}$ -modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral. On montre que le groupe de Galois de tout problème de Schubert concernant des droites dans l'espace projective contient le groupe alterné. En utilisant un critère de Vakil et l'argument de position spéciale due à Schubert, ce résultat se déduit d'une inégalité particulière des nombres de Kostka des tableaux ayant deux rangées. Dans la plupart des cas, une injection combinatoriale facile montre l’inégalité. Pour les cas restants, on utilise le fait que ces nombres de Kostka apparaissent dans la décomposition en produit tensoriel des $\mathfrak{sl}_2\mathbb{C}$-modules. En interprétant le produit tensoriel comme l'action de certaines matrices de Toeplitz commutant entre elles, et en utilisant de l'analyse spectrale et les séries de Fourier, on réécrit l’inégalité comme la positivité d'une intégrale. L’inégalité sera établie en estimant cette intégrale.

Highlights

  • The Schubert calculus of enumerative geometry [KL72] is a method to compute the number of solutions to Schubert problems, a class of geometric problems involving linear subspaces

  • One can reduce the enumeration to combinatorics; for example, the number of solutions to a Schubert problem involving lines is a Kostka number for a rectangular partition with two parts

  • He used this and his geometric Littlewood-Richardson rule [Vak06a] to show that the Galois group was at least alternating for every Schubert problem involving lines in projective space Pn for n ≤ 16

Read more

Summary

Introduction

The Schubert calculus of enumerative geometry [KL72] is a method to compute the number of solutions to Schubert problems, a class of geometric problems involving linear subspaces. Vakil [Vak06b] gave a combinatorial criterion, based on group theory, which can be used to show that a Galois group contains the alternating group He used this and his geometric Littlewood-Richardson rule [Vak06a] to show that the Galois group was at least alternating for every Schubert problem involving lines in projective space Pn for n ≤ 16. Brooks implemented Vakil’s criterion and the geometric Littlewood-Richardson rule in python and used it to show that for n ≤ 40, every Schubert problem involving lines in projective space Pn has at least alternating Galois group. Theorem 1 The Galois group of any Schubert problem involving lines in Pn contains the alternating group We prove this theorem by applying Vakil’s criterion to a special position argument of Schubert, which reduces Theorem 1 to proving a certain inequality among Kostka numbers of two-rowed tableaux. Derksen found Schubert problems in the Grassmannian of 3-planes in P7 whose Galois groups are significantly smaller than the full symmetric group, and Vakil generalized this to problems in the Grassmannians of 2k−1 planes in P2n−1 whose Galois groups are not the full symmetric group for every k ≥ 2 and n ≥ 2k [Vak06b, §3.13]

Schubert problems of lines
Vakil’s Criterion for Galois groups of Schubert problems
Inequalities
Inequality of Lemma 3 in most cases
Kostka numbers as integrals
Inequality of Lemma 3 in the remaining case
Proof of Lemma 8

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.