Abstract

Let \(\mathcal {U}=\{U(t,s)\}_{t\ge s\ge 0}\) be a strongly continuous and exponentially bounded evolution family acting on a complex Banach space X and let \(\mathcal {X}\) be a certain Banach function space of X-valued functions. We prove that the growth bound of the family \(\mathcal {U}\) is less than or equal to \(-\frac{1}{c(\mathcal {U}, \mathcal {X})}\) provided that the convolution operator \(f\mapsto \mathcal {U}*f\) acts on \(\mathcal {X}.\) It is well known that under the latter assumption, the convolution operator is bounded and then \(c(\mathcal {U}, \mathcal {X})\) denotes (ad-hoc) its norm in \(\mathcal {L}(\mathcal {X}).\) As a consequence, we prove that if \(\sup \nolimits _{s\ge 0}\int \nolimits _{s}^\infty \Vert U(t,s)\Vert dt=u_1(\mathcal {U})<\infty ,\) then \(\omega _0(\mathcal {U})u_1(\mathcal {U})\le -1.\) Finally, we give an example showing that the accuracy of the estimates may be quite accurate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call