Abstract
This paper presents an industrial visual inspection system that uses inductive learning. The system employs RULES-3 inductive learning algorithm to extract the necessary set of rules and template matching technique to process an image. Twenty 3×3 masks are used to represent an image. Each example consists of 20 frequencies of each mask. The system was tested on five different types of tea or water cups in order to classify the good and bad items. The system was trained using five good cups and then tested for 113 unseen examples. The results obtained showed the high performance of the system: the efficiency of the system for correctly classifying unseen examples was 100%. The system can also decide what type of the cup is being processed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.