Abstract

The term smart manufacturing refers to a future-state of manufacturing, where the real-time transmission and analysis of data from across the factory creates manufacturing intelligence, which can be used to have a positive impact across all aspects of operations. In recent years, many initiatives and groups have been formed to advance smart manufacturing, with the most prominent being the Smart Manufacturing Leadership Coalition (SMLC), Industry 4.0, and the Industrial Internet Consortium. These initiatives comprise industry, academic and government partners, and contribute to the development of strategic policies, guidelines, and roadmaps relating to smart manufacturing adoption. In turn, many of these recommendations may be implemented using data-centric technologies, such as Big Data, Machine Learning, Simulation, Internet of Things and Cyber Physical Systems, to realise smart operations in the factory. Given the importance of machine uptime and availability in smart manufacturing, this research centres on the application of data-driven analytics to industrial equipment maintenance. The main contributions of this research are a set of data and system requirements for implementing equipment maintenance applications in industrial environments, and an information system model that provides a scalable and fault tolerant big data pipeline for integrating, processing and analysing industrial equipment data. These contributions are considered in the context of highly regulated large-scale manufacturing environments, where legacy (e.g. automation controllers) and emerging instrumentation (e.g. internet-aware smart sensors) must be supported to facilitate initial smart manufacturing efforts.

Highlights

  • A 2011 report on big data authored by McKinsey Global Institute, an economic and business research arm of McKinsey and Company, highlighted big data analytics as a key driver in the wave of economic innovation [1]

  • This paper focuses on maintenance and diagnosis because of the role it plays in promoting machine uptime, as well as the potential impact it can have on operating costs, with some estimates claiming equipment maintenance can exceed 30 % of total operating costs, or between 60 and 75 % of equipment lifecycle cost [6]

  • This paper presents an industrial big data pipeline architecture, which is designed to meet the needs of data-driven industrial analytics applications focused on equipment maintenance in large-scale manufacturing

Read more

Summary

Introduction

A 2011 report on big data authored by McKinsey Global Institute, an economic and business research arm of McKinsey and Company, highlighted big data analytics as a key driver in the wave of economic innovation [1]. The report suggests that this innovation may be impeded by a shortage of personnel with the skills needed to derive insights from big data, with demand in the US predicted to double between 2008 and 2018. This prediction seems credible when current data growth estimates are considered, with one estimate suggesting that the worlds data is doubling approximately every 1.5 years [2], and another estimate proposing that 2.5 quintillion bytes of. Given the anticipated shortage of personnel that are capable of managing this exponential data growth, there is a need for tools and frameworks that can simplify the process

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.