Abstract

When using traditional microbiological techniques to monitor cell proliferation and viability, stressed, sublethally injured, or otherwise "viable but nonculturable" cells often go undetected. Because of this, such cells often are not considered by mathematical models used to predict bioprocess performance on scale-up and inaccuracies result. Therefore, analytical techniques, decoupled from postsampling growth, are desirable to rapidly monitor individual cell physiologic states during microbial fermentations. Microbial cells, including Escherichia coli, Rhodococus sp., and Sacharomyces cerevisiae, were taken at various stages from a range of fermentation processes and stained with one of three mixtures of fluorescent stains: rhodamine 123/propidium iodide, bis-oxonol/propidium iodide, or bis-oxonol/ethidium bromide/propidium iodide. An individual cell's physiologic state was assessed with a Coulter Epics Elite analyzer based on the differential uptakes of these fluorescent stains. It was possible to resolve an individual cell's physiologic state beyond culturability based on the functionality of dye extrusion pumps and the presence or absence of an intact polarized cytoplasmic membrane, enabling assessment of population heterogeneity. This approach allows the simultaneous differentiation of at least four functional subpopulations in microbial populations. Fluorescent staining methods used in our laboratories have led to a functional classification of the physiological state of individual microbial cells based on reproductive activity, metabolic activity, and membrane integrity. We have used these techniques extensively for monitoring the stress responses of microorganisms in such diverse areas as bioremediation, biotransformation, food processing, and microbial fermentation; microbial fermentation is discussed in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call